$\gdef\bun#1#2{\dfrac{#1}{#2}}$ $\gdef\Bun#1#2{\bun{#1}{#2}}$ $\gdef\punit#1{\ [\mathrm{#1}]\,}$ $\gdef{\d}{\mathop{d}{}}$ $\gdef\dx{dx}$ $\gdef\dy{dy}$ $\gdef\dt{dt}$ $\gdef\dv{dv}$ $\gdef\dr{dr}$ $\gdef\dV{dV}$ $\gdef\dP{dP}$ $\gdef\dT{dT}$ $\gdef\dU{dU}$ $\gdef\dI{dI}$ $\gdef\boldrm#1{\mathrm{#1}}$ $\gdef\rmA{\boldrm{A}}$ $\gdef\rmB{\boldrm{B}}$ $\gdef\rmC{\boldrm{C}}$ $\gdef\rmD{\boldrm{D}}$ $\gdef\rmE{\boldrm{E}}$ $\gdef\rmF{\boldrm{F}}$ $\gdef\rmG{\boldrm{G}}$ $\gdef\rmH{\boldrm{H}}$ $\gdef\rmI{\boldrm{I}}$ $\gdef\rmJ{\boldrm{J}}$ $\gdef\rmK{\boldrm{K}}$ $\gdef\rmL{\boldrm{L}}$ $\gdef\rmM{\boldrm{M}}$ $\gdef\rmN{\boldrm{N}}$ $\gdef\rmO{\boldrm{O}}$ $\gdef\rmP{\boldrm{P}}$ $\gdef\rmQ{\boldrm{Q}}$ $\gdef\rmR{\boldrm{R}}$ $\gdef\rmS{\boldrm{S}}$ $\gdef\rmT{\boldrm{T}}$ $\gdef\rmU{\boldrm{U}}$ $\gdef\rmV{\boldrm{V}}$ $\gdef\rmW{\boldrm{W}}$ $\gdef\rmX{\boldrm{X}}$ $\gdef\rmY{\boldrm{Y}}$ $\gdef\rmZ{\boldrm{Z}}$ $\gdef\Deg{^{\circ}}\!$ $\gdef\DegC{\,{}^{\scriptsize\circ\!}\rmC}$ $\gdef\punitDegC{\punit{{}^{\scriptsize\circ\!}\rmC}}$ $\gdef\neareq{\fallingdotseq}$ $\gdef\mss{\punit{m/s^2\,}}$ $\gdef\ms{\punit{m/s}}$ $\gdef\s{\punit{s}}$ $\gdef\m{\punit{m}}$ $\gdef\mm{\punit{m^2}}$ $\gdef\mmm{\punit{m^3}}$ $\gdef\rad{\punit{rad}}$ $\gdef\N{\punit{N}}$ $\gdef\J{\punit{J}}$ $\gdef\cal{\punit{cal}}$ $\gdef\W{\punit{W}}$ $\gdef\g{\punit{g}}$ $\gdef\kg{\punit{kg}}$ $\gdef\K{\punit{K}}$ $\gdef\Hz{\punit{Hz}}$ $\gdef\C{\punit{C}}$ $\gdef\A{\punit{A}}$ $\gdef\V{\punit{V}}$ $\gdef\mol{\punit{mol}}$ $\gdef\NA{N_{\rmA}}$ $\gdef\CV{C_{\rmV}}$ $\gdef\CP{C_{\rmP}}$ $\gdef\Pa{\punit{Pa}}$ $\gdef\SUB#1{_{\mathrm{#1}}}$ $\gdef\vec#1{\overrightarrow{#1}}$ $\gdef\dvec#1{\overrightarrow{#1}}$ $\gdef\stext#1{\text{\small #1}}$ $\gdef\mat#1#2{\begin{pmatrix}#1\\#2\end{pmatrix}} $\gdef\sinh{\sin\theta}$ $\gdef\sinx{\sin x}$ $\gdef\siny{\sin y}$ $\gdef\cosh{\cos\theta}$ $\gdef\cosx{\cos x}$ $\gdef\cosy{\cos y}$ $\gdef\tanh{\tan\theta}$ $\gdef\tanx{\tan x}$ $\gdef\tany{\tan y}$ $\gdef\in{^{\,\mathrm{in}}}$ $\gdef\out{^{\,\mathrm{out}}}$ $\gdef\net{^{\,\mathrm{net}}}$ $\gdef\max{_{\mathrm{max}}}$ $\gdef\min{_{\mathrm{min}}}$

羽白 いむ

東京大学医学部医学科卒 現役医師
数学のトリセツ共著者
東大指導専門塾鉄緑会 物理・数学科元講師

ベクトルと空間座標

座標空間 3次元への拡張 図のように,定点 $\rmO$ を共通とする3本の数直線を軸とし,軸が互いに直交して作る空間を座標空間といいます。 以後,3本の直線を $x$ 軸,$y$ 軸,$z$ 軸とし ...

位置ベクトル

位置ベクトル 位置ベクトルとは 平面上に,1点 $\rmO$ を固定して考えると,点 $\rmP$ の位置は,ベクトル $\vec{p}=\vec{\rmO\rmP}$ によって定めることができます。 ...

内積

ベクトルの内積 定義 平面上に3点 $\rmO$,$\rmA$,$\rmB$ があり,$\angle \rmA\rmO\rmB=\theta$,$\vec{a}=\vec{\rmO\rmA}$,$\v ...

ベクトルと平面座標

座標平面とベクトル 座標との関連 ベクトルは「向き」と「大きさ」をもった量です。 原点を $\rmO$ とし,点 $\rmA(1,\,2)$ を座標平面上にとります。このとき $\vec{\rmO\r ...

微分係数と導関数

関数の極限 まずは言葉の確認 関数 $f(x)=2x^2$ において,$x$ が $1$ と異なる値をとりながら $1$ に近づくとき,$f(x)$ の値は $2$ に限りなく近づきます。 一般に,関 ...

ベクトルの基本演算

ベクトルの定義 向きを含めた議論 線分 $\rmA\rmB$ に $\rmA$ から $\rmB$ への向きをつけて考えるとき,これを有向線分 $\rmA\rmB$ といい,$\rmA$ を始点,$\ ...

三角関数のグラフ

三角関数のグラフ グラフの概形 $y=\sin x$,$y=\cos x$,$y=\tan x$ のグラフをそれぞれ考えてみましょう。 $y=\sin x$ のグラフ 以下の形になります。 $y=\c ...

三角関数の合成

三角関数の合成 合成とは? 三角関数の合成という,非常に重要な式変形について学んでいきましょう。とても難しく見えるのですが,仕組みは「加法定理の逆」をやっているだけです。 まずは正しい手順を紹介します ...

積和・和積定理

積和公式 公式の導出 三角関数の積を和の形に直す式が積和公式です。加法定理から導くことができます。 加法定理を用いて導出します。 $$\begin{aligned} \sin(\alpha+\beta ...

加法定理

加法定理 和や差について 2つの角の和や差の三角関数を考えてみましょう。 $$\cos\left(\bun{\pi}{2}-\bun{\pi}{3}\right)=\cos\Bun{\pi}{6}$$ ...